ARELI CASTREJON

+31 62 9116204 \diamond castrejon@astro.rug.nl

EDUCATION

Kapteyn Institute of Astronomy, University of Groningen Ph.D. in Astronomy	2020 - Present
California State University, Northridge Master's of Science in Physics GPA: 3.50	2017 - 2019
California State University, Northridge Bachelor's of Science in Physics - Astrophysics Option	2015 - 2017
Pasadena City College Transfer Coursework in Physics	2010 - 2015

EXPERIENCE

Research Assistant

NASA/Jet Propulsion Laboratory-Caltech

· I began to work on a project involving the chemistry in vortices that are present in circumstellar disks. I am investigating the concentration of grains of different sizes, dust/gas mass ratios, and the amount of time the dust survives in the disk. This will answer the question whether streaming instabilities can be overcome, allowing for planetesimal formation via self-gravity.

Graduate Research Assistant

California State University, Northridge

Started a new project on debris disks where I studied the role of dust-to-gas ratios on planet-induced gaps in the gas of the disk. The disks that started with higher dust-to-gas ratios, reach local dust-to-gas ratios of 1. This causes the shape of the gap to deviate as the dust begins to affect the gas motion. Additionally, I studied the effect of dust drift, which should be present in debris disks. The dust drift results in large concentrations of dust to accumulate at the edges of the planetary gap, leading to local dust-to-gas ratios near unity.

Undergraduate Researcher

California State University, Northridge

During this time I studied debris disks with photoelectric heating, a proposed mechanism that could explain structures in these disks usually attributed to planets. Our aim was to disentangle the effect of this instability from the effects of a planetary perturber. I studied disks containing a solitary planet using a Neptune or Jupiter-sized analog. We found that in order to differentiate the effects of a planet from the instability, a planet must carve a dust gap that is larger than the periodicity of the instability structures. I also studied various disk temperatures and found that larger temperatures increase dust drift, quenching the effects of the instability, as well as reducing the gap carved by the planet.

Peer Learning Facilitator

California State University, Northridge

• In this position, the Facilitator was tasked with holding two lectures a week, of 1.5 hour length. I was in charge of bringing in the problem sets and lecture to supplement the main instruction. Moreover, I was in charge of holding two 1-hour sessions where students could ask any questions regarding homework or exam preparation.

AWARDS

Pasadena City College Recognition in Astronomy MESA of PCC Certificate of Recognition August 2019 - October 2020

August 2017 - August 2019

October 2016 - August 2017

January 2017 - June 2017

TALKS AND PUBLICATIONS

Astrophysical Letter Publication Carbon ionization heating does not quench the photoelectric instability in debris disks	In Preparation
Astrophysical Journal Publication Disentangling planets from photoelectric instability in gas-rich optically thin dusty dis	Submitted 2019 sks Accepted
10-min Talk at Research Symposium California State University, Northridge	April 2019
Speaker at Journal Club NASA Goddard Space Flight Center	April 2019
Speaker at Journal Club Jet Propulsion Laboratory (NASA-Caltech)	April 2019
Speaker at Max Planck Institute for Astronomy Heidelberg, Germany	August 2018
10-min Talk at Research Symposium California State University, Northridge	April 2018
Poster at Exoplanets in Southern California Caltech	September 2017
Speaker at NORDITA: Phase Transitions in Astrophysics Stockholm, Sweden	May 2017
Chosen Representative at CSU Research Competition Cal. Poly. San Luis Obispo	April 2017
Poster at Research Symposium California State University, Northridge	April 2017

TECHNICAL AND PERSONAL SKILLS

Programming Languages	Proficient: Python & MATLAB (data extraction & visualization) Basic: Fortran, labVIEW, C++
Python Packages	Matplotlib, Numpy, Scipy
Computational Codes	The Pencil-Code, RADMC3D
Software & Tools	LaTeX, Microsoft Office, Linux
Languages	Spanish(Native), English(Native)